skip to main content


Search for: All records

Creators/Authors contains: "Johnson, Ruth I."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lott, S (Ed.)
    Abstract Tissue function is dependent on correct cellular organization and behavior. As a result, the identification and study of genes that contribute to tissue morphogenesis is of paramount importance to the fields of cell and developmental biology. Many of the genes required for tissue patterning and organization are highly conserved between phyla. This has led to the emergence of several model organisms and developmental systems that are used to study tissue morphogenesis. One such model is the Drosophila melanogaster pupal eye that has a highly stereotyped arrangement of cells. In addition, the pupal eye is postmitotic that allows for the study of tissue morphogenesis independent from any effects of proliferation. While the changes in cell morphology and organization that occur throughout pupal eye development are well documented, less is known about the corresponding transcriptional changes that choreograph these processes. To identify these transcriptional changes, we dissected wild-type Canton S pupal eyes and performed RNA-sequencing. Our analyses identified differential expression of many loci that are documented regulators of pupal eye morphogenesis and contribute to multiple biological processes including signaling, axon projection, adhesion, and cell survival. We also identified differential expression of genes not previously implicated in pupal eye morphogenesis such as components of the Toll pathway, several non-classical cadherins, and components of the muscle sarcomere, which could suggest these loci function as novel patterning factors. 
    more » « less
  2. The Drosophila eye is an outstanding model system for exploring fundamental mechanisms of growth and development. The adult eye is composed of a perfect hexagonal lattice of ∼750 unit eyes, or ommatidia, each containing precisely 20 well-characterized cells. The eye develops from the eye/antennal imaginal disc, a flattened epithelial sac. During larval and pupal development, cells in the disc grow and undergo compartmentalisation, cell cycle arrest, differentiation, directed movement, and apoptosis, all utilising gene networks and signalling pathways similar to those in vertebrates. The genetic accessibility of Drosophila, together with the precision of eye development, makes the fly retina an extremely useful system with which to investigate the roles of genes and signalling pathways in development. 
    more » « less